有关变压器差动保护的接线图,差动保护是变压器的主保护,其接线正确与否,将对安全运行造成较大的影响,差动保护的正确接线方法,与电流互感器回路的接线方法等。
差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、母线差动保护等等。
变压器差动保护是防止变压器内部故障的主保护。
其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。
如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大于动作电流,保护动作断路器跳闸。
差动保护是变压器的主保护,其接线正确与否,将对安全运行造成较大的影响。随着农业用电的不断发展。目前大多数的县先后新建了110千伏或更高的电压等级变电所,随之而来的是较大容量的三线圈变压器的出现,但由于一些县供电单位的继电保护人员,不能熟练掌握新出现的三线圈变压器差动保护的接线方法,以致经常发生错误接线,导致保护误动。本文旨在对三线圈变压器差动保护的接线方法进行讨论,以供参考。
一般的说,差动保护的错接线,主要表现为电流互感器回路的接线错误,故下面就着重讨论这个问题,我们知道,在进行差动保护电流互感器回路接线时,一个重要的一切就是确定电流互感器二次侧的极性。但二次侧极性是对应一次侧极性而言的,因此要确定二次侧极性就必须先假定一次侧极性。如何假定一次侧极性,各地有不同的习惯做法。而能否恰到好处地假定一次侧极性,将对电流互感器回路的接线方法带来一定的影响。
一种习惯做法是,在确定电流互感器极性时,三侧均取主电源侧为正。(酷爱电子网 www.diangongbao.com)如变压器高压侧视母线侧为主电源侧,取母线侧为正,而中、低压侧则以变压器测为主电源侧,均取变压器测为正,然后再根据以上的假定,来确定对应的二次侧极性。这样一来,差动保护电流互感器回路就应按以下方式连接(本文讨论的三线圈变压器的接线组别均为常见的Y/Y/△一12一11接线):
图1画出了当三侧均取主电源侧为正时的差动保护电流互感器四路接线原理图。图中箭头所示的方向,为电流的正方向。
电流互感器一次侧电流所表示的方向,即为正常运行情况下变压器负荷电流的方向。另外,图中注有“☆”者为电流互感器一次侧的正极性端,注有“*”者为电流互感器二次侧的正极性端。为便于讨论,下面将分高、中、低三侧分别进行介绍:
1、从图1可知,高压侧差动保护电流互感器回路的连接顺序是a+→b-→b+→c-→c+→a-,并为正极性出线。为便于记忆,我们说以上电流互感器二次侧连接方式,对应于变压器高压线圈的接线来说,相当于Y/△一11接线组别。
如取高压侧一次 A相电流的反向值-IAl为基准向量,并根据图 1所示的电流流向,
即可画出如图2所示的高压侧差动保护回路电流向量图。
其中:I`a1、I`b1、I`C1为电流互感器回路相电流
Ia1、Ib1、IC1为电流互欧器回路线电流。
2、见图1中压侧差动保护电流互感器回路的接线可知,其连接顺序是a-→b+→b-→c+→c-→a+,并为负极性出线。以上电流互感器二次侧连接方式对应于变压器高压线圈的接线来说,相当于Y/△一5接线。
同样如果取高压侧一次A根电流的反向值-IA1为基准向量(以下均同),并根据图1所示的电流流向,即可画出如图3所示的中压侧差动保护回路电流向量图。比较图3和图2可知,此时中压侧电流互感器回路二次侧线电流(即差动回路电流,以下同。)和高压侧电流互感器四路二次侧线电流,两者正好是反向的。这对假设一次电流为正常运行情况下的负荷电流的情况来说,出现差动回路电流相抵消的结果,说明以上差动保护电流互感器四路的接线是完全正确的。
其中。I`a2、I`b2、I`c2为中压侧电流互感器回路相电流;
Ia2、Ib2、Ic2为中压侧电流互感器回路线电流。
常见的错误接线多发生在中压侧,造成接线错误的主要原因是,为了取得一个反向电流(对应高压侧而言),误认为在进行中压侧电流互感器接线时,只要采用将高压侧的接线方式改为负极性出线即可,于是就出现了如图4所示的错误接线情况。通过对上图分的析可知,此时中压侧电流互感器二次侧连接方式,对应于变压器高压线圈的接线来说,相当于Y/△-11接线而不是Y/△一 5接线。
通过对图4接线的向量分析也可看出(如图5所示),此时在正常运行情况下,中压侧电流互感器回路二次测线电流和高压侧电流互感器回路二次测线电流,两者夹角为60O,故以上接线是错误的。
3、从图1还可见,低压侧差动保护电流互感器四路的连接方式为负极性出线的星形接线,故对应于变压器高压线圈的接线来说,相当于Y/Y- 6接线。图6画出了以上接线的电流向量图,可见,其在正常运行情况下,差动保护回路低压侧电流和高压侧电流也是反向的。
其中:I`a3、I`b3、I`c3为低压侧电流互感器回路相电流
Ia3、Ib3、Ic3为低压侧电流互感器回路线电流。
上面介绍了差动保护电流互感器回路接线的一种施工方法。
因此只要按以上所述的原则进行接线,就可也保证差动保护电流回路的接线正确。但另一方面我们应该指出的是,由于在假定电流互感器一次侧极性时,采用了以主电源侧为正的施工方法,使得中压和低压侧差动保护电流互感器回路的接线均系非常见的正常连接方式,因此施工人员不易记忆掌握,容易发生差错。
下面将介绍另一种习惯做法,也就是所要推荐的一种施工方法。
这种施工方法的特点,在确定电流互感器一次侧极性时,不是以主电源侧为正而是三侧均政母线侧为正。这样一来,便可使差动保护的电流回路接线变得简单和易于掌握了。
当三侧均取母线侧为正时变压器差动保护电流互感器回路的接线原理图如图7所示。
注意,假设电流互感器一次侧的极性,仅仅是为了能确定对应的二次侧的极性,而和如何假定一次侧电流的流向是无关的。所以我们在图7中所表示的一次电流的流向,仍为正常运行情况下的负荷电流的正方向。
为便于讨论,下面也分高、中、低三侧分别进行介绍。 1、高压侧电流互感器一次侧取母线侧为正,这和前面“1”条中所述的取电源侧(即路为母线侧)为正的情况是完全一样的,故就差动保护电流互感器的连接顺序和差动保护回电流向量图(见图2)来说,两者也是完全相同的;这里不再赘述了。
2、见图7中压侧差动保护电流互感器回路的接线可知,当电流互感器一次机时极性取母线侧为正后,其连接顺序是。a+→b→b+→c→c+→a-.,并为正极性出线。显然,这是一种常见的接线方式.其和高压侧差动保护电流互感器回路的接线顺序完全相同,它对应于变压器高压线圈的接线来说,也相当于Y/△一11接线。但是让我们来比较一下图7和图1所示中压侧差动保护电流互感器回路接线原理图,可发现两者的实际接线情况是完全一样的,所不同的只是电流互感的标定极性不同。
同时再比较一下两者的电流分布情况还可知,由于在假定电流正方向时采用的是同一个原则,所以,以上两种情况的电流的实际流向也是完全相同,因此它们的差动回路电流向量分析的结。
果也是完全一致的(见图3”)。
3、低压侧电流互感器的一次侧极性也同样供母线侧为正后,则从图7所示的接线原理图低压侧部份可知,其为正极性出线的星形连接,它对应于变压器高压线圈的接线来说,相当于Y-Y/12接线,可见,也是一种常见的接线方式。‘把图7和图1作一比较,同样也可以发现低压侧的实际接线情况也是完全一样的,其电流互感器回路电流的实际流向也是相同的(电流向量分析结果同图6)。
通过以上分析可知,前面所介绍的两种不同的施工做法,其最后结果是完全一样的。向量分析方法也是相同的。所不同的只是由于标定极性的做法不同。使得端子的极性名称发生了变化,从而出现了不同名称的接线方式。这样一来,显然后一种施工方法要比前一种为佳。
因为后一种施工方法使得所出现的电流互感器回路的接线方式的名称,变得是常见的和易于被记忆掌握的接线方式了,因此也就不容易发生差错。
推荐后一种施工方法。
这一种施工方法和前一种施工方法相比较,其具有以下特点:
1、变压器三侧差动保护电流互感器回路的接线,均系正常的连接顺序,其对应一次线圈的接线来说,均为常见的典型接线组别。
2、变压器高、中压倒电流互感器回路的接线方式相同。
3、均为正极性出线。