高压电动机的常见故障分类与原因,高压电动机的故障分为电器故障和机械故障,高压电机常见故障包括线圈全部烧毁变色、一相或二相烧毁变色、轴承过热等电机常见故障。
一、高压电动机的故障分类
高压电动机的故障可分为电器故障和机械故障。
机械方面的主要故障是振动、轴承过热、转子扫膛、运转声音异常等;电气方面则主要是电动机绕组接地、短路、开路、接触不良、鼠笼断条等故障。
基于对化工企业68台次高压电机的故障情况进行了统计,其中,绝缘故障42台次,接线及接触不良引发故障9台次,轴承故障8台次,转子断笼5台次,其他故障4台次,分别占统计故障数的61.8%、13.2%、11.8%、7.3%和5.9%。
绝缘损坏是化工企业高压电动机出现概率最高的多发故障。
二、高压电机常见故障原因
1、线圈全部烧毁变色
当三相绕组全部变成黑色时,说明该电机曾长时间过电流,轴承损坏,定转子严重相擦或电压等级不对。普通电机频繁起动,制动状态下运行也会出现此现象。如图a示:这是使用不当造成的。
2、一相或二相烧毁变色
一相或二相全部变成黑褐色,一般是由于缺相运行造成。Y接运行时烧两相, 接运行时烧一相,缺相运行的原因一般发生在供电线路中,极少数发生在电机内部(掉头或引线断)
出现这种情况应先检查引线是否掉头或引线烧断,否则,是供电线路问题,和电机无关。
3、局部烧毁或部分绕组变色
所示的局部烧断现象,说明该处发生了匝间短路或对地短路。若部分绕组变色,则是已有短路但还未达到最严重的程度,见分析图e~h,图i是相间短路造成的。
4、匝间短路的判断方法
4.1 在三相电压平衡的情况下,原基本平衡的三相电流逐渐或突然变得非常不平衡,同时电机温升增加负载能力下降,可初步判定该机定子绕组匝间短路。
4.2 用电桥测试直流电阻,三相直流电阻不平度大,即某相变小说明该相发生了匝间短路:正常情况下,三相直流电阻不平衡度≤1%,超过此值说明线圈有匝间短路的可能。
4.3 匝间仪测试
5、三相运行电流不平
在三相直流电阻平衡的情况下,三相运行电流不平衡应检查三相端电压是否平衡。电压的轻微不平衡能引起电流的极大不平衡,一般情况下空载不平衡大,满载时不平衡小,满载时不平衡度不超过10%。
6、电机运行中噪声
电机运行中会产生不同的声音,电机大小不同,结构不同声音会有明显的不同。如果运行中产生的声音在国家标准GB10069-2000“电动机噪声测量方法及噪声限值 ”规定的范围之内,属正常,超出标准范围均为噪声,应予以处理。
6.1 轴承噪声
经长途运输的电机,试运行时会有明显的轴承异声,加注润滑脂即可解决,这是因为运输途中的颠簸,润滑脂从轴承部位流出造成的。
运行一段时间后出现的轴承噪声,须用听棒或螺丝刀放在轴承外盖仔细听,如果轴承运行的声音很均匀,加油即可解决,如果轴承运行中有明显的“咯噔”声,须更换轴承,同时检查轴承室的圆柱度。因为铸铁或钢板的端盖制造过程中均会产生应力,电机运行一段时间后,随着应力的释放,轴承室会变形,圆柱度可能会超差,在用户现场检查,轴承室是否变形的最好方法是用旧轴承回装。我公司电机轴承室内孔尺寸均为H7公差。
6.2 机械噪声
若电机发出低频的“嗡嗡”声,一般原因如下:
a) 内盖安装时偏,电机轴磨擦内盖,这时的声音是连续的,处理时可将内盖调换角度重新上紧。
b) 若在启动或停机进出现断续的“嗡嗡”声,可以考虑是跑套,因为转速低时滚动摩擦力相对大一些,轴承的滚珠在内、外环滚道中转动时带动外环或内环旋转的力相对大,如轴承室尺寸偏大,或轴颈尺寸偏小,外环或内环就可能转动,就会产生断续的摩擦声。这时往往会伴随断续的振动。若发生高频响声,可能是甩油环或挡水环松动。
6.3 振动噪声
电机振动时会产生明显的噪声,尤其是共振,处理这种问题只有处理好振动问题。
6.4 电磁噪声
电磁噪声是持续的断开电源立即消失的噪声,和设计制造均有关系,设计时槽配合选择不当、制造时定子冲片片间压力不当、真空浸漆不到位等等,都可能产生电磁噪声。处理时若重新浸漆没有明显改善就几乎没有办法了。
7、轴承过热
轴承过热的原因:
轴颈大了,轴承装上后,由于内环膨胀,轴承径向游隙减小,运行时发热。同样道理,端盖或轴承套内孔小同样会造成轴承运行时过热。
润滑脂过多或过少也会引起轴承过热。
电机运行时受轴向力,电机的定位轴承会过热(一般是风扇端)。
处理轴承过热时应先查明原因。一般情况下,端盖或轴承套内孔尺寸小或内孔变形是主要原因,修刮后即可。
8、电机抱轴
隔爆电机抱轴,多是因为内盖和轴的间隙过小,运行因发热膨胀造成内盖和轴研死。发热的原因主要是轴承过热造成。现场修理时须检查电机轴是否弯曲,如弯曲须换轴,不弯曲更换零部件。现场检查时应观察轴承注油管是否有润滑脂,如没有说明没有按要求加润滑脂,还要检查轴承测温装置及继电保护是否使用正常。
9、滑动轴承温度高。
9.1 强制润滑的滑动轴承温度高有以下几种原因:
a)轴与瓦隙过小;
b)油囊开口小,进油量不足;
c)润滑油温度高;
d)轴瓦研伤;
e)回油不畅,进油量不足;
在现场处理时,应先检查回油是否畅通,畅通时在回油透油镜上能看到油快速流动,能看到回油,但液面高,流速很慢,说明回油管安装不当,或回油管道有堵塞。回油没有压力,油是靠落差(自重)回到油箱中的,因此油箱的安装位置要保证回油口比轴承回油管水平线低1.2m以上。在保证安装正确的情况下,轴瓦温度还高,再检查轴瓦是否有问题,修刮轴瓦时间隙可控制在轴颈的3‰以下。
另需注意,凡在现场检查轴瓦时都要把油囊适当开大,以保证进油量。油囊开大对轴瓦运行只有好处没有坏处。
9.2 自润滑的滑动轴承因散热条件差温度高的现象相对多些,现场处理时除上述方法还应注意,定子温升对轴瓦的影响。
10、漏油
滑动轴承电机往电机内部渗漏油现象存在,这是电机内风扇运行时产生的负压造成的。(来自:电工技术之家)
现场解决方法:
1)防护等级较低的Y系列电机滑动轴承可在轴承上方的扇形盖板上钻多排小孔,或直接更换带有方孔的扇形盖板,靠外部空气进入电机内部减小轴承内盖区域的负压解决漏油问题。
2)防护等级要求高的电机可以靠改内盖结构,在电机外部通正压气体的方法,消除内盖区域的负压,解决漏油问题。同样的道理YB系列高压自润滑结构的电机,风扇端轴承会因电机外风扇工作时产生的负压向外漏油,漏出油被风吹走,在风管中流到电机轴伸端,解决方法相似。
3)油压过高,进油量过大,回油不畅均会造成向内、向外漏油现象。
实际上,轴承进油口的压力是无法控制的,说明书上要求的0.01~0.05Mpa的油压是为了保证从润滑站出来的润滑油克服管道阻力后能顺利地流到轴承座内部,油进入轴承座后的油压是零,轴承座进油口的压力也是零!我们控制的是润滑油的流量,节流孔板、调节阀(节流阀)均是流量调节元件。
在回油畅通的情况下流量调节到油窗的一半正好。
这种情况下,一般不会向外漏油,如漏油应检查浮动油封的回油孔是否堵塞,清理回油孔,把回油孔适当钻大能很好地解决向外漏油的问题。
一般情况下不用更换浮动油封。根据向内漏油的机理,除了通风,通正压气体外还可以通过增加油雾向内漏油的阻力来解决漏油问题,最好的方法是用硅质密封胶把最外侧的浮动油封的油槽填满(最多可以填满两道槽),靠密封长度加长,增加油雾流动的阻力解决漏油问题。
11、振动
振动的原因很多,4极以上多极数电机不会因为电机制造质量问题引起振动,振动常见于2极电机,振动的原因很多,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。